Effect of Ca2+ Channel Block on Glycerol Metabolism in Dunaliella salina under Hypoosmotic and Hyperosmotic Stresses
نویسندگان
چکیده
The effect of Ca(2+) channel blockers on cytosolic Ca(2+) levels and the role of Ca(2+) in glycerol metabolism of Dunaliella salina under hypoosmotic or hyperosmotic stress were investigated using the confocal laser scanning microscope (CLSM). Results showed that intracellular Ca(2+) concentration increased rapidly when extracellular salinity suddenly decreased or increased, but the increase could be inhibited by pretreatment of Ca(2+) channel blockers LaCl(3), verapamil or ruthenium red. The changes of glycerol content and G3pdh activity in D. salina to respect to hypoosmotic or hyperosmotic stress were also inhibited in different degrees by pretreatment of Ca(2+) channel blockers, indicating that the influx of Ca(2+) via Ca(2+) channels are required for the transduction of osmotic signal to regulate osmotic responses of D. salina to the changes of salinity. Differences of the three blockers in block effect suggested that they may act on different channels or had different action sites, including influx of Ca(2+) from the extracellular space via Ca(2+) channels localized in the plasma membrane or from intracellular calcium store via the mitochondrial. Other Ca(2+)-mediated or non-Ca(2+)-mediated osmotic signal pathway may exist in Dunaliella in response to hypoosmotic and hyperosmotic stresses.
منابع مشابه
Comparative Analysis on the Key Enzymes of the Glycerol Cycle Metabolic Pathway in Dunaliella salina under Osmotic Stresses
The glycerol metabolic pathway is a special cycle way; glycerol-3-phosphate dehydrogenase (G3pdh), glycerol-3-phosphate phosphatase (G3pp), dihydroxyacetone reductase (Dhar), and dihydroxyacetone kinase (Dhak) are the key enzymes around the pathway. Glycerol is an important osmolyte for Dunaliella salina to resist osmotic stress. In this study, comparative activities of the four enzymes in D. s...
متن کاملHydrolysis of polyphosphates and permeability changes in response to osmotic shocks in cells of the halotolerant alga dunaliella.
The effects of osmotic shocks on polyphosphates and on the vacuolar fluorescent indicator atebrin have been investigated to test whether acidic vacuoles in the halotolerant alga Dunaliella salina have a role in osmoregulation. Upshocks and downshocks induce different patterns of polyphosphate hydrolysis. Upshocks induce rapid formation of new components, tentatively identified as 5 or 6 linear ...
متن کاملChanges in Dunaliella
Changes in phosphometabolites, following osmotic shock, were analyzed by two-dimensional thin layer chromatography, in extracts of the halotolerant alga DunalielIa salina in order to clarify the regulation of glycerol synthesis from starch. The experiments were carried out in wild-type and in osmotically defective mutant cells. It is demonstrated that hyperosmotic shock induces a decrease in fr...
متن کاملRapid changes in polyphosphoinositide metabolism associated with the response of Dunaliella salina to hypoosmotic shock.
The inositol phospholipids phosphatidylinositol, phosphatidylinositol 4-phosphate (PIP), and phosphatidylinositol 4,5-bisphosphate (PIP2) comprise 14.8, 1.2, and 0.3 mol %, respectively, of Dunaliella salina phospholipids. In isolated plasma membrane fractions, PIP and PIP2 are highly concentrated, together comprising 9.5 mol % of plasmalemma phospholipids. The metabolism of these inositol phos...
متن کاملConcurrent changes in Dunaliella salina ultrastructure and membrane phospholipid metabolism after hyperosmotic shock
Hyperosmotic shock, induced by raising the NaCl concentration of Dunaliella salina medium from 1.71 to 3.42 M, elicited a rapid decrease of nearly one-third in whole cell volume and in the volume of intracellular organelles. The decrease in cell volume was accompanied by plasmalemma infolding without overall loss of surface area. This contrasts with the dramatic increase in plasmalemma surface ...
متن کامل